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Abstract

For the relatively high frequencies relevant in a turbofan engine duct, the modes of a lined section may be classified in two
categories: genuine acoustic 3D duct modes resulting from the finiteness of the duct geometry, and 2D surface waves that
exist only near the wall surface in a way essentially independent of the rest of the duct. Per frequency and circumferential
order there are at most four surface waves. They occur in two kinds: two acoustic surface waves that exist with and without
mean flow, and two hydrodynamic surface waves that exist only with mean flow. The number and location of the surface
waves depends on the wall impedanceZ and mean flow Mach number. WhenZ is varied, an acoustic mode may change via
small transition zones into a surface waves and vice versa.

Compared to the acoustic modes, the surface waves behave—for example as a function of the wall impedance—rather
differently as they have their own dynamics. They are therefore more difficult to find. A method is described to trace all
modes by continuation inZ from the hard-wall values, by starting in an area of the complexZ-plane without surface
waves.
© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Although a straight duct with uniform velocity profile and impedance wall is a simplification, it is an important
model of the lined duct of a real turbofan engine[1–8].

The relatively easy analytic description of the sound field by means of modes provides much more insight in
global trends like the effects of mean flow, frequency and impedance on the modal decay rates than any other, more
“exact” numerical solutions. This remains true for slowly varying ducts where the modal concept is still applicable
[9,10].

A further understanding of the modal behaviour is therefore important for both interpretation and understanding
of more complex sound fields. Particularly welcome is a better predicted behaviour of a mode’s physically most
distinctive property, the axial wave number. This is the aim of the present paper.

The essence of the behaviour to be described below is the same for any lined flow duct of constant cross-section.
For simplicity, we will restrict our analysis to the prototype case of a hollow cylindrical duct.
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2. Physical model

We consider a circular symmetrical duct of radiusa with a compressible inviscid perfect gas flow, in dimensional
form described by densitỹρ, pressurẽp, velocity ṽ, entropys̃, and soundspeed̃c, satisfying

d

dt̃
ρ̃ = −ρ̃∇̃ · ṽ, ρ̃

d

dt̃
ṽ = −∇̃p̃, d

dt̃
s̃ = 0,

where

s̃ = CV log p̃ − CP log ρ̃, c̃2 = γ
p̃

ρ̃
.

CV is the heat capacity or specific heat at constant volume andCP is the heat capacity or specific heat at constant
pressure.R is the specific gas constant andγ the Poisson ratio, which are practically constant and given by
R = CP − CV = 286.73 J/kg K, andγ = CP /CV = 1.4 (for air).

This flow consists of a uniform mean flow with small perturbations given by

ṽ = U0ex + v′, p̃ = p0 + p′, ρ̃ = ρ0 + ρ′.

The entropy perturbations′ is proportional top′ − c2
0ρ

′. The mean flow quantitiesp0, ρ0, s0, c0 are positive, the
velocityU0 is zero or positive, but less thanc0. Upon linearisation this yields(

∂

∂t̃
+ U0

∂

∂x̃

)
ρ′ + ρ0∇ · v′ = 0, (1a)

ρ0

(
∂

∂t̃
+ U0

∂

∂x̃

)
v′ + ∇p′ = 0, (1b)

(
∂

∂t̃
+ U0

∂

∂x̃

)
(p′ − c2

0ρ
′) = 0. (1c)

By taking the curl ofEq. (1b), we find for the vorticity perturbations�′ = ∇ × v′
(
∂

∂t̃
+ U0

∂

∂x̃

)
�′ = 0. (1d)

By combiningEqs. (1a)–(1c), we can derive a convected wave equation for the pressure(
∂

∂t̃
+ U0

∂

∂x̃

)2

p′ − c2
0∇2p′ = 0. (1e)

FromEqs. (1c) and (1d), we see that in uniform flow entropy and vorticity perturbations are either identically zero,
or just convected by the mean flow (i.e.∂/∂t̃ + U0∂/∂x̃ ≡ 0). Note that in uniform flow pressure, vorticity and
entropy are decoupled, so we can leave here any vorticity or entropy perturbations unspecified and consider only
the pressure field.

We assume time harmonic perturbations with frequencyω̃, and make dimensionless as follows:

x = x̃
a
, t = c0t̃

a
, ω = ω̃a

c0
, p′ = ρ0c

2
0 Re(p eiωt ), v′ = c0 Re(v eiωt ).

We introduce the mean flow Mach numberM = U0/c0 (0 ≤ M < 1), andEqs. (1e) and (1b)become the convected
reduced wave (or Helmholtz) equation inp and a relation withv(

iω +M
∂

∂x

)2

p − ∇2p = 0, (2a)
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iω +M

∂

∂x

)
v + ∇p = 0, (2b)

where

∇2 = ∂2

∂x2
+ ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
.

To the mean flow, the duct is hard walled, but for the acoustic field the duct is lined with an impedance wall, which
means that the ratio of the complex amplitudes of the time harmonic pressure and normal velocity (directed into
the wall) at the wall is prescribed:p = Zv, wherev is the radial component ofv and the dimensionless complex
numberZ is the specific impedance of the wall.

However, with flow we have to be careful. In the limit of vanishing viscosity, the boundary layer reduces to a
vortex sheet, but the velocity perturbationsat the wall remain different from the onesnearthe wall, being at different
sides of the vortex sheet. (The pressure is continuous.) So when we apply the impedance wall boundary condition
to the acoustic field in the flow, we have to include the kinematic effect of the vortex sheet. This modification was
for the first time correctly given for uniform mean flow along a plane wall by[11], and later generalised for flow
along curved surfaces by[12].

In the present notation, the impedance wall boundary condition with uniform mean flow is found as follows. If
the position of the perturbed vortex sheet is given by

r = 1 + Re(η(x, θ)eiωt ),

continuity of streamlines yields the radial velocityv on the flow side and the radial velocityvw on the liner side
being given by (after linearisation)

v =
(

iω +M
∂

∂x

)
η, vw = iωη.

Since the pressure across the vortex sheet is continuous and by definition the impedance boundary condition at the
wall is

p = Zvw,

we thus have after elimination ofη

iωv =
(

iω +M
∂

∂x

) (p
Z

)
, while p = 0 if Z = 0, at r = 1. (3)

Note that this equation remains valid forM = 0.

3. Duct modes

Because of the circular symmetry, the general solution ofEq. (2a)is given by the Fourier–Bessel modal sum[1]

p =
∞∑

m=−∞

∞∑
µ=−∞

′AmµJm(αmµr)e− imθ − ikmµx, (4)

whereJm is themth order Bessel function of the first kind[13], m = 0,±1,±2, . . . , µ = ±1,±2, . . . , andAmµ

are modal amplitudes. SinceJ−m = (−1)mJm, it is sufficient to consider here positivem only.
Any radial modal wave numberα is related to the corresponding axial modal wave numberk by the dispersion

relation (α andk are dimensionless)

α2 + k2 = (ω − Mk)2. (5)
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The boundary condition(3) is satisfied by applying the condition to each mode, and assuming uniform convergence1

of series(4) nearr = 1. This leads to the eigenvalue equation

(ω − Mk)2Jm(α) = iωZαJ ′
m(α) (6)

which has a countable number of solutionsk = kmµ in the complexk-plane. The solutions do not depend on the
chosen branch ofα = α(k) because the combinationαJ ′

m(α)/Jm(α) is a meromorphic function ofα2. Note that
Eq. (6)is also valid for the problem with zero mean flow. The governing equations remain linear.

3.1. Propagation direction

The modes are counted such that forµ > 0 they propagate in positivex-direction, and forµ < 0 they propagate
in negative direction.

As the impedance wall absorbs acoustic energy if Re(Z) > 0, the modes will usually decay when propagating
away from their source. Therefore, the propagation direction of most modes is found by considering the sign of
Im(kmµ). If this is negative, the mode decays in positive direction and the mode is right-running. If it is positive the
mode is left-running.

If the wall is not dissipative, for example ifZ = ∞ (hard wall) orZ is purely imaginary, some modes may have
a real axial wave number, which means that Im(kmµ) = 0 and there is no direction of decay. Probably the easiest
approach in this case is to take a suitable limit inZ, starting from a dissipative situation. Alternatively, without mean
flow it is possible to consider the sign of the modal phase velocity2 ω/kmµ, but with flow the effect of convection
(leading to the reduced axial wave number; see below) should be accounted for.

Although the sign of Im(kmµ) is the most common parameter to determine the propagation direction, there are
some subtle problems in the case with mean flow, where the absorption of acoustic energy by the liner may be
compensated by acoustic energy supplied by the mean flow vortex sheet. These problems are only partly solved
[14,15], and we will mention them here.

A vortex sheet separating two regions of mean flow with different velocity is unstable, the well-known Kelvin–
Helmholtz instability. A vortex sheet along a solid wall, on the other hand, is not unstable, because the wall inhibits
any motion normal to the wall. However, if the wall is not solid, like an impedance wall, and at the same time the wall
is not absorbing too much energy, the vortex sheet seems to be unstable again for certain combinations of impedance
and Mach number. This instability appears mathematically like a mode as inEq. (4), but now increasing rather than
decaying. At first sight, an increasing instability cannot be distinguished from a decaying regular acoustic mode
propagating in opposite direction. Therefore, one of the found modes may have to be interpreted as an instability.

In [15] (seeEqs. (13a)–(13d)), it was shown that under certain conditions this instability can be recognised
explicitly. If the frequencyω is high enough such that the geometry becomes essentially 2D, the Mach numberM

is low enough, and the impedanceZ as a function ofω is sufficiently simple (for example, a mass-spring-damper
systemZ(ω) = r + iaω − ib/ω), the instability can be recognised analytically, by arguments of causality and
continuation in the complexω-plane. We have no doubt that it is possible to generalise this for more arbitrary cases,
but this has to be done numerically.

4. Analysis

The problem we will be dealing with is a thorough analysis of the behaviour of the axial wave numberskmµ,
defined byEqs. (5) and (6), as a function ofZ andM in the context of relatively high frequencies occurring in

1 Forx �= 0, this is not a very stringent condition, as the convergence is greatly accelerated by the exponential, since Imkmµ = O(µ), µ → ∞.
2 Considering the modal group velocity (dkmµ/dω)−1 has not yet been shown to be productive. For example, an inevitable problem is thatZ

is alwaysω-dependent.
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Fig. 1. Branch cuts and signs ofγ = √
1 − σ 2 in complexσ -plane. The definition ofγ (σ ) adopted here is the branch of the multi-valued

complex square root that corresponds to Im(γ ) ≤ 0 for all σ . Im(γ ) = 0 along the branch cuts.γ (σ ) � −iσ sign(Reσ) if |σ | � 1.

aircraft engine ducts. For this, it is convenient to introduce theLorentzor Prandtl–Glauerttype transformation that
will render the equations as clean as possible. With3

β =
√

1 −M2, x = βX, ω = βΩ, α = Ωγ, k = Ω

β
(σ −M), (7a)

(where in the rest of the paperX = IM (Z)), the mode

eiΩMX e−iΩσXJm(Ωγ r) (7b)

is scaled such that the asymmetry due to convection is now brought outside the expression as just a factor. The
variablesσ andγ are called the reduced axial and radial wave numbers. The dispersion relation and the eigenvalue
equation is now

γ 2 + σ 2 = 1, (8a)

(1 −Mσ)2Jm(Ωγ ) = iβ3ZγJ ′
m(Ωγ ), (8b)

yielding infinitely many complex values ofγ andσ , depending on the parametersM, Z, ω andm.
Important special cases are: (a) the hard wallZ = ∞ with solutionsΩγ = ±j ′

mµ (the zero’s ofJ ′
m), and (b) the

pressure release wallZ = 0 with solutionsΩγ = ±jmµ (the zero’s ofJm), or the additional solutionσ = M−1.
Note that this last solution refers to the velocity field only, and not to the pressure, because forZ = 0 this is zero at
the wall and therefore zero everywhere.

To define the complex functionγ (σ ) = √
1 − σ 2 uniquely, we have to introduce branch cuts and select a branch.

As in any wave problem, the sign of the imaginary part of a wave number is of primary importance (it selects
decaying from increasing waves), we choose the branch cuts along the lines where Im(γ ) = 0. Then we select the
branch with Im(γ ) ≤ 0, by definingγ (0) = 1. SeeFig. 1.

3 If κx, κr , andκ0 = ω̃/c0 indicate (respectively) the dimensional axial, radial, and free field wave numbers, thenγ = βκr/κ0 andσ =
M + β2κx/κ0.
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4.1. No mean flow

Without mean flow, i.e.M = 0, Eqs. (8a) and (8b)simplify to

γ 2 + σ 2 = 1, (9a)

Jm(ωγ ) = iZγJ ′
m(ωγ ). (9b)

Now we can distinguish two important classes of solutions: a class with Im(ωγ ) large (in a sense to be explained
below), and the complementary class. If Im(ωγ ) is large negative, the Bessel functions simplify to increasing
exponentials (Eq. (A.1)), such thatJ ′

m/Jm → i, and the eigenvalueEq. (9b)reduces to

1 + Zγ = 0 (10a)

with solutions

σ = ±
√

1 − Z−2. (10b)

As γ was defined with negative imaginary part, the asymptotics of Im(ωγ ) large positive does not occur. At the
same time, from this restriction onγ it follows immediately that we have only such solutions if Im(Z) ≤ 0.

If ω is large, which is the typical situation in aircraft engine duct problems, any solution(10b)—except for nearly
real impedances—produces a large Im(ωγ ) and is therefore an approximation of a solution of(9a) and (9b).

The physical interpretation of these solutions is that the corresponding mode is spatially confined to the immediate
neighbourhood of the wall, as the modal shape functionJm(ωγ r) becomes exponentially decaying away from the
wall (Eq. (A.1)):∣∣∣∣Jm(ωγ r)Jm(ωγ )

∣∣∣∣ � eω Im(γ )(1−r)

r1/2
.

In other words, these modes are not really duct modes, but surface waves. FromEq. (10b), it follows that there are
at most two such surface waves, and they exist only if Im(Z) < 0.

This implies that the other possible solutions ofEqs. (9a) and (9b), the ones with Im(ωγ ) not large, necessarily
occur near (i.e. typically within a distanceO(ω−1)) the branch cuts of square rootγ (σ ), where Im(γ ) = 0.

Trajectories of these surface wave numbers, given byEq. (10b), as function ofZ, are plotted inFig. 2. To include
all complex values ofZ, we have drawn two fan-shaped families of curves: one for fixed Re(Z) and one for fixed
Im(Z), all of course with Im(Z) ≤ 0. Note that un-attenuated waves occur only for purely imaginaryZ.

Trajectories of all duct mode eigenvalues are plotted inFig. 3, as a function of the imaginary partX of impedance
Z = R + iX, and variousR, for ω = 5, andm = 1. For illustration, the 2D surface wave approximations are
included, and the agreement is seen to be very good. In fact, if we used a much higherω, the agreement would have
been too good, with hardly any visible difference. This figure is further discussed inSection 5. The reason why we
let Im(Z) = X increase is explained inSection 6.

4.2. With mean flow

With mean flow, i.e.M > 0, we have to deal with the full equations

γ 2 + σ 2 = 1, (8a)

(1 −Mσ)2Jm(Ωγ ) = iβ3ZγJ ′
m(Ωγ ). (8b)

Again, we can distinguish two important classes of solutions: a class with Im(Ωγ ) large, and the complementary
class. If Im(Ωγ ) is large negative,J ′

m/Jm → i (Eq. (A.1)), and the eigenvalueEq. (8b)reduces to

(1 −Mσ)2 + β3Zγ = 0. (11)

As γ was defined with negative imaginary part, the asymptotics of Im(Ωγ ) large positive does not occur.
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Fig. 2. Trajectories of surface wavesσ (Eq. (10b)) for varyingZ = R + iX; M = 0. FixedR andX = 0:−0.1:−∞ (—). FixedX and
R = 0:0.1:∞ (- - -).

If Ω is large, which is the typical situation in aircraft engine duct problems, any solution of(11)—except for
impedances near the bordering lines—produces a large Im(Ωγ ) and is therefore an approximation of a solution of
(8b).

The physical interpretation of these solutions is again that the corresponding mode is spatially confined to the
immediate neighbourhood of the wall, as the modal shape functionJm(Ωγ r) becomes exponentially decaying away
from the wall (Eq. (A.1)):

∣∣∣∣Jm(Ωγ r)

Jm(Ωγ )

∣∣∣∣ � eΩIm(γ )(1−r)

r1/2
.

In other words, these modes are not really duct modes, but surface waves.4 By bringing the second term to the right
and squaring both sides,Eq. (11)becomes a polynomial inσ of degree 4. It follows that there are at most four such
surface waves. Their existence and number varies withZ andM.

The other possible solutions ofEqs. (8a) and (8b), the ones with Im(Ωγ ) not large, necessarily occur near (i.e.
typically within a distanceO(ω−1)) the branch cuts of square rootγ (σ ), where Im(γ ) = 0.

Trajectories of these surface wave numbers given byEq. (11), as function ofZ, are plotted inFig. 4. To include
all complex values ofZ, we have drawn two families of curves: one for fixed Re(Z) and one for fixed Im(Z).
Un-attenuated waves occur for purely imaginaryZ, but in contrast to the no-flow case, suchZ do allow also
attenuated modes.

An interesting special case is the incompressible flow limit (M → 0,Mσ fixed,Z = O(M)), where the solutions
can be given explicitly. DefineS = Mσ , ζ = Z/2M, then we get

(1 − S)2 − 2iζRe(S)S = 0, (12)

4 We note in passing that boundary condition(3) is based on the assumption of a thin mean flow boundary layer, which should of course
remain thin compared to the surface wave penetration depth Im(Ωγ )−1.
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Fig. 3. Trajectories ofσ for m = 1,ω = 5,M = 0,−∞ < Im(Z) < ∞.
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Fig. 4. Trajectories of surface wavesσ (Eq. (11)) for varyingZ = R + iX; M = 0.5. (Some specific values ofZ are indicated.) FixedR and
X = −∞:0.2:∞ (—). FixedX andR = 0:0.2:∞ (- - -).

Fig. 5. ComplexZ-plane, with regions of different numbers of surface waves. No solutions inI, σHI ∈ II, . . . ,V, σSR ∈ III, . . . ,V,
σSL ∈ IV, . . . ,V, σHS ∈ V. Thick lines map to the branch cuts inFig. 6. In the figure,M = 0.5 is taken.
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with four solutions (one in each quadrant)

SHI = i earsinh(ζ−i), Im(ζ ) ≤ 1, (13a)

SSR = −i e−arsinh(ζ−i), Im(ζ ) ≤ 1, (13b)

SHS = −i earsinh(ζ+i), Im(ζ ) ≤ −1, (13c)

SSL = i e−arsinh(ζ+i), Im(ζ ) ≤ −1. (13d)

We may now apply, as in[15], the causality arguments of[16,17], and vary the frequencyω to become negative
imaginary, i.e.ω = −iν. A typical impedance of mass-spring-damper type then yieldsζ ∼ r+iaω−ib/ω = r+aν+
b/ν, which is real. As a result, the above wave numberωM−1SHI shifts to the lower half of the complex plane, which
means that it denotes a right-running, growing wave and therefore an instability. So for at least some impedances
and parameter values, this surface wave of the first quadrant is an instability. Therefore, we have tentatively called
it “hydrodynamic instability”σHI . The others are called: a right-running stable hydrodynamic surface waveσHS, a
right-running ordinary surface waveσSR and a left-running ordinary surface waveσSL. (“Hydrodynamic” because
they exist only with flow.)

Solutions ofEq. (11)may be analysed in great detail, and the results are summarised in theFigs. 5 and 6, and
Table 1. The only impedances that may possibly occur (for passive walls) are with Re(Z) ≥ 0. So the imag-
inary Z-axis is an important borderline, which is mapped (as far as it allows solutions) to theσ -plane as the

Fig. 6. Regions of existence of surface waveσ . Thick lines map to the imaginaryZ-axis inFig. 5(except the part in regionI where no solutions
exist). In the figure,M = 0.5 is taken.
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Fig. 7. Trajectories ofσ for m = 1,ω = 5,M = 0.5, −∞ < Im(Z) < ∞.
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egg-shaped contour and the part of real axes given by(−∞,−1) ∪ (1,∞). In the σ -plane the branch cuts of
γ are important borderlines, where the 2D approximation breaks down, and the solutions become regular duct
modes again. (In the approximation they disappear to the other Riemann sheet.) The branch cuts are mapped
to theZ-plane as the four contours that separate the five regions of existence of different numbers of surface
waves.

Theeggin the axial wave number plane plays a prominent role, which is not entirely unexpected, as the typical
radiusM−1 in reduced wave numberσ corresponds approximately with the Strouhal numberω/M in dimensional
wave numbersk and with the hydrodynamic wave numberω̃/U0 to the dimensionless wave numbers.

Trajectories of all duct mode eigenvalues are plotted inFig. 7, as a function of the imaginary partX of impedance
Z = R+ iX, and variousR, forω = 5,m = 1, andM = 0.5. For illustration, the 2D surface wave approximations
are included, and the agreement is seen to be very good. As inFig. 3, if we used a much higherω, the agreement
would have been too good, with hardly any visible difference. This figure is further discussed in the following
section. The reason why we let Im(Z) = X decrease is explained inSection 6.

5. Further observations

5.1. Qualitative behaviour as function ofZ andM

Suppose we vary the impedance from hard-wall to hard-wall, via vertical straight lines in the complex plane:
Z = R + iX, whereR is fixed andX varies between−∞ and∞.

Without mean flow (Fig. 3), most eigenvalues return to the hard-wall value they started from. Some, however, form
a closed loop such that they meander from their initial hard-wall value to the next hard-wall value. The loop is closed
by the first eigenvalue, which becomes a surface wave (whenX increases from−∞) and, following a large circular
contour, turns back (whenX � 0) to a hard-wall eigenvalue of much higher index. Sinceωγ = −ω/R � −j ′

mµ,
the hard-wall return-indexµret can be estimated as (see(A.3))

µret = ω

πR
− 1

2
m+ 1

4
. (14)

This circular loop becomes larger and larger whenR tends to zero, until it becomes unbounded forR = 0. It shrinks
to zero whenR becomes large.

With mean flow (Fig. 7), the situation is quite different. Not some, butmostof the eigenvalues move up one
position. WhenR is big enough, the acoustic surface waves (within theegg; typically |σ | < M−1) form a closed
loop. This loop does not grow to infinity whenR tends to zero, but grows until it approximately coincides with
the egg. The hydrodynamic surface waves (outside theegg;5 typically |σ | > M−1) on the other hand, start at a
hard-wall value atX = ∞, but tends to infinity as follows

σ � ± iβ3Z + 2M

M2
= ±−β3X + iβ3R + 2M

M2
(X → −∞), (15)

so they disappear to infinity along lines parallel to the real axis. Only the finite number of modes between the
acoustic and hydrodynamic surface waves return to their initial hard-wall values.

Following whatever contour inZ, the modes inside theeggremain practically inside, and the modes outside remain
outside6. So there are only a finite number of hard-wall modes that may turn into an acoustic surface wave, while the
others may become a hydrodynamic surface wave. The hard-wall modal indexµcrit separating these modes may be
estimated from the fact that theeggcrosses the imaginary axis atσ = ∓iM−1, orΩγ � −Ω√

1 +M−2 = −j ′
mµ.

5 Note that forM → 0, theeggbecomes infinitely large, pushing the hydrodynamic surface waves away to infinity.
6 Apart from rare exceptions whenR is small.
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This yields approximately (see(A.3))

µcrit � ω

πMβ

√
1 +M2 − 1

2
m+ 1

4
. (16)

5.2. Multi-valued functions and branch points

The above analysis is mainly descriptive, and the results are interpreted with emphasis on their physical context.
The deeper origin of this strange game of musical chairs may therefore remain in the background.

From a complex-function point of view, it is not so strange. If we considerEqs. (8a) and (8b)or (9a) and (9b)
as the definition of a complex functionσ = σ(Z) of complex variableZ, this function is evidently multi-valued
with an infinite number of branches: each branch ofσ(Z) represents a mode. The branch points—the points where
two or more branches coalesce—are found at theZ-values where theσ -derivative ofEq. (8b)or (9b)vanishes (also
known as the impedances with double eigenvalues). If we follow a closed contour in the complexZ-plane (the
contour may be closed at infinity) such that a branch point is encircled, we arrive at another branch (i.e. another
eigenvalue) when we return to theZ we started from.

This is exactly what happens when we trace the contoursZ = R + iX (R fixed) for smaller and smallerR. We
start and end at the sameZ = ∞, but the smaller theR, the more double eigenvalues (branch points) are encircled,
and the eigenvalue we return to moves higher up in the list.

6. How to find all eigenvalues by continuation in Z?

Based on the above-described dynamics of the eigenvalues in the complexZ-plane, we can devise a continuation
method to find all eigenvalues for givenM, m, ω andZ.

Assume that the hard-wall values are known. Of course, some effort is to be invested here too, but since all
(reduced) radial eigenvaluesΩγmµ = j ′

mµ are real, independent ofM, and asymptotically for largeµ found at fixed
intervals, this is relatively easy. Now we can connect a contour in the complexZ-plane from anyZ = ∞ to the sought
value. Then we can trace the eigenvalues as a function ofZ as follows. Start at a large enoughZ-value, take small
enough steps along the contour, use the previous values as starting values, and solve by a simple Newton–Raphson
zero-finding routine the eigenvalue equation at eachZ-position.

As we have seen, in some parts of theZ-plane we have a problem: surface waves may disappear to or appear
from infinity. When they come in from infinity, we have to make sure to pick up these eigenvalues somewhere,
which may be not so easy. It is therefore easier to take a starting “Z = ∞” without disappearing surface waves.
We propose contours parallel to the imaginary axis, like was done inFigs. 3 and 7. For M = 0, this isZ =
R − i∞, while for M > 0 this isZ = R + i∞ (note the corresponding up- and down-arrows given in the
figures.)

For R = 0, some care is required when upper and lower half plane solutions meet along the realσ -axis, for
example atσ = 0 andM−1.

7. Exact results

Just for the record, a few exact results on the existence of surface waves can be given. Note that for imagi-
naryZ = iX and imaginary radial wave numbersγ = −iτ (andσ real) Eq. (8b)may be rewritten as the real
equation

ΩτIm+1(Ωτ)

Im(Ωτ)
= −m− Ω

β3X
(1 −Mσ)2. (17)
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Fig. 8. Trajectories ofσ for m = ω = 10,M = 0.5, and varyingZ = 0.2 + iX.

SincezIm+1(z)/Im(z) is monotonically increasing inz ≥ 0, we have forM = 0 exactly two solutions if−ω/m ≤
X < 0 and none otherwise. IfM �= 0, we have no solutions ifX > 0, and maybe up to 4 otherwise. There is at
least one ifX < −Ω(1 ±M)2/β3m.

8. Large circumferential order m

The used asymptotic expression(A.1) of Jm applies only for fixedm, and is totally inappropriate form ≥ O(ω).
This, however, does not necessarily mean that the surface wave behaviour immediately disappears, because only
the limit |J ′

m/Jm| → O(1) was essential. It appears that form ∼ ω the general behaviour remains the same, in
particular the occurrence of surface waves. SeeFig. 8. Form > O(ω), a certain surface wave behaviour may still
be recognised, but not any more described by the above equations.

9. The annular duct

For the annular duct with dimensionless hub radiush and an impedanceZ1 at r = 1 andZh at r = h we find the
reduced eigenvalue equation

(1 −Mσ)4(Jm(Ωγ )Ym(Ωγh)− Ym(Ωγ )Jm(Ωγh))

+iβ3Zhγ (1 −Mσ)2(Jm(Ωγ )Y ′
m(Ωγh)− Ym(Ωγ )J ′

m(Ωγh))

−iβ3Z1γ (1 −Mσ)2(J ′
m(Ωγ )Ym(Ωγh)− Y ′

m(Ωγ )Jm(Ωγh))

+β6Z1Zhγ
2(J ′

m(Ωγ )Y ′
m(Ωγh)− Y ′

m(Ωγ )J ′
m(Ωγh)) = 0, (18)

whereYm is themth order Bessel function of the 2nd kind. By substituting the asymptotic approximation(A.2) (and
similar for the forms with derivatives), we obtain the surface wave equation

((1 −Mσ)2 + β3Z1γ )((1 −Mσ)2 + β3Zhγ ) = 0 (19)

which is just the product of the surface wave equations at inner and outer duct wall. Depending on the selectedZ1
andZh, the mode may be of surface wave type at either or both duct walls. Therefore, occurrence and behaviour of
any surface waves is similar to what is presented above.
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10. Conclusions

An analysis is made of the behaviour of the acoustic modes of a lined duct with and without uniform mean flow.
The lining is assumed to be locally reacting and of impedance type, while the frequency of the sound field is fixed
and given. It is shown that for high dimensionless frequenciesω (as prevail in lined flow ducts of turbofan engines)
and given circumferential orderm ≤ O(ω) we have three types of modes.

(i) An infinite number of genuine acoustic modes, of which the complex axial wave number, as a function of wall
impedanceZ, is never far away from the hard-wall values.

(ii) Two acoustic surface waves, which occur both with and without mean flow.
(iii) Two hydrodynamic surface waves, which occur only with mean flow.

Surface waves are called that way because their field is only significant close to the wall, as it decays exponentially
away from the wall. They are essentially 2D and independent of the duct geometry. The governing equation is
therefore much simpler than for the general duct mode, and allows a detailed analysis.

The surface waves exist only whenZ is in certain areas of the complexZ-plane, which are given in detail. The
reduced axial wave number of the surface waves can be found in the complex plane in very specific areas, separated
by anegg-shaped border with a typical radius equal to the hydrodynamic wave number. The acoustic surface waves
are found inside theegg in the 2nd and 4th quadrant (M > 0, e+iωt -convention), and the hydrodynamic surface
waves are found outside theeggin the 1st and 3rd quadrant. At least in the incompressible limit and for certain type
of impedances, one hydrodynamic surface waves can be shown to be an instability. It is expected that this remains
true in more general cases.

Relevant for eigenvalue searching routines is the following observation. When a mode is traced along a path in
the complexZ-plane, for example from hard-wall value to hard-wall value a contour parallel to the imaginary axis,
the mode does not always return to its original value but changes position with another mode. This happens when
one or more branch points of the axial wave number, considered as a function ofZ, are encircled. These branch
points correspond to the impedances with double eigenvalues.

Appendix A. Bessel functions

We have for fixed orderm and large values of argumentz in the lower half of the complex plane[13, formula 9.2]

Jm(z) � eiz−imπ/2−iπ/4

√
2πz

, z → ∞, Im(z) < 0 (A.1)

and similarly

Jm(z)Ym(zh)− Ym(z)Jm(zh) � i

πz
√
h

ei(1−h)z, z → ∞, Im(z) < 0. (A.2)

Note that for our surface wave classification we essentially deal here with complex values of the argument, while
the exponential growth ofJm is the key factor. For realz andm �= 0 far better expressions are available due to
Debije [13, (formulae 9.3), 18]. However, these expressions do not explicitly yield the zerosj ′

mµ. Therefore, we
still use for our estimates of which modes reside inside or outside the egg the relatively crude approximations

j ′
mµ � (µ+ 1

2m− 1
4)π, µ → ∞. (A.3)
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